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Taxonomy of Generative Models

What we’ve learned:
Deep Generative Models e PPCA
‘ / * VAE
Autoregressive Flow-based Latent variable\ Energy-based
models models models models
(e.g., PixelCNN) (e.g., RealNVP)

What we study now: Implicit models Prescribed models
e Markov Models (e.g., GANs) (e.g., VAEs)




Lecture Outline

e Stochastic Processes
e Definition and Examples

* Markov Models and Markov Chains
e Definition
* Transition Matrix
* Examples

* Inference via Matrix Multiplication

* Learning via Maximum Likelihood



Stochastic Process

* Definition: A stochastic process (Xy, X4, ..., X7) is a sequence of random variables
where each X; takes values on the same sample space (1 (state space)

* Example (Bernoulli Process): X; has 2 states and 2 := {0,1}
X; ~ Bernouli(q), t=0,..,T

* How many states does X; has? What is )?

* Example (Categorical Process): X; has K states and Q := {1, ..., K}
X, ~ Cat(m), t=20,..,T

* How many states does X; has? What is )?



Markov Property Revisited

* Issue: In the absence of any assumptions on [P, modeling the joint distribution
P(Xy, Xy, ..., X7) might require exponentially many parameters

e Conditional Independence Assumption (Markov property):

future independent past given | | present
Xii1 1 ), CY, € | X;

* Consequence: We now only need linearly many parameters:
P(xg, o, xr) = Pleo)P(xy | X0)P(xp | %5, 21 ) - P(x7 | %6grsdr=2, X7-1)
= P(xe)p(xy | x0)P (x5 | 1) - PQxp | X7—1)



Markov Chains

* Definition: A (discrete time) Markov chain is a stochastic process (X, X1, ..., X7)
with the Markov property

P(xg, ..., x7) = P(xg)P(xy | x0)P (x5 [ 1) - P(xp | X7_1)

* Without the Markov Property:




Parameters of Markov Chains
* Initial Probability: mr; is the probability that X, starts at state i

;= P(X, = i) VieQ={1,..K}

* Transition Probability: a;; is the probability that X; transitions from state i to j

al] = ]P)(Xt+1 :]|Xt:l) VL,]EQ:{l,,K}
e Matrix and Vector Notations: Row Vector
a11 A1k
A= ¢+ 1| eREXK = [y, ..., ] € RVK
Ak1 05742¢

A Markov chain is fully specified by its parameters 8: = (1, A)




Example: Markov Sentence Model

* State space () = {all possible words}

* The following are viewed as words and included in the state space
e <s>: the start of the sentence
* Digits
* Punctuations

 Fach sentence is a Markov chain where the words are random variables:

[P(xo P (x| %) P(xz x| | P(x3]x2) P(xg|x3) P(xs5|xs) P(xg|xs)
<s> Homework 1 IS due soon

* Meaning of P(x;,|x;): Given that the current word is x;, what is the probability
that the next word is x4, 1?



Example: DNA Sequencing
e State Space Q) = {A,C,G, T}

* Transition Matrix A: Initial Probability Vector m:
A C G T
A 0359 0.143 0.167 0.331 A 0.25
C 0.384 0.156 0.023 0.437 ¢ 0.25
G 0306 0.199 0.150 0.345 G 025
7 0284 0.182 0.177 0.357 T 0.25

* Question 1: Given C, what is the probability of getting DNA sequence CTGAC?

* Answer 1:
P(CTGAC | Xg=C)=PT I1C)-P(GI|T)-P(AIG) -P(C|A)=~0.00338

1 1 1 1

0.437 0.177 0.306 0.143




Example: DNA Sequencing o

e State Space Q) = {A,C,G, T} A 0359 0.143
c 0384 0.156

G 0306 0.199
J 0.284 0.182

* Question 2: What'’s the probability of X, = A given X, = C?

* Answer 2: The state transition is C = x; — A for all possible x; € Q.:

9
0.167

0.023
0.150
0.177

0.331
0.437
0.345
0.357

A 0.25
C 0.25
G 0.25
T 0.25

P(X; =A1Xo=C) =Y, caP(Xy = A| X; = x,) - P(Xy = x; | Xo = C)

= [0.384,0.156,0.023,0.437]

"0.3591

0.384
0.306

-0.234-

* This is the inner product of the second row and first column of the transition matrix A

* This is the (2,1)-th entry of A?



Example: DNA Sequencing )

e State Space Q) = {A,C,G, T} A 0.359
c 0.384

G 0.306
T 0.284

* Question 3: What’s the probability of X, = A?

* Answer 3: The state transition is x; = x; — A for all possible x,, x; € (Q:

P(Xy = A) = Zxoeﬂ P(X, = Al Xo = x0) - P(Xp = %)

A

Question 2

* This is the inner product of the vector = and the first column of A?:

0.143
0.156
0.199
0.182

0.167
0.023
0.150
0.177

T

0.331
0.437
0.345
0.357

Initial Probability

TA%e,

A 0.25
C 0.25
G 0.25
T 0.25



Transition Matrix and Distribution of Future States

 State Space () = {1, e ) K} Tr;nsition McaltrixA and initial probability distribution 7 :
11 - ik
* (A°%);;: the (i,j)-th entry of A° A= a,;l a,;K € RKXK 7= [ ] € RIK

* (A%).;: the j-th column of A®
* (+);: the j-th entry of a vector

e Claim 1: P(Xpp5 = j | X, = 1) = (4%); (Vs,t,i,))
* Claim 2: P(Xs = j) = (mA%); (Vs,))

e Proof of Claim 2:

P(Xs =Jj) = Z P(Xs =jl Xo =1) - P(Xp =1) = E(As)ij - = 1(A4%),; = (Th°);

i€ T i€Q)
* Proof of Claim 1: By induction (next page) -
Claim 1




Proof of Claim 1

 State Space () = {1, e ) K} Tr;nsition McaltrixA and initial probability distribution 7 :
11 - ik
* (A°%);;: the (i,j)-th entry of A° A= az;l a,;K € REXK 7= [ ] € RIK

* (A%).;: the j-th column of A®
* (+);: the j-th entry of a vector

* Claim 1: IP(XH_S :] |Xt — l) — (AS)U

* Proof of Claim 1 (Induction):
* Vs, t,itis easy to prove shift invariance: P(X¢4s =j | Xy = i) = PX; =j | Xy = 1)
* Next we prove P(Xs = j | X, = i) = Aj; by induction on s:

* The base case s = 1 follows from the definition of A
* Suppose we have P(X,_; =j | Xy, =1i) = Afj_l then:

P(Xs =jlXo=1)= 2 PXs=j| Xeo1 =k) - PXs_1 =k|X; =10) = z agj - (A5 D = (A%
ien ien



Eigenvalues of Transition Matrix PO L 4
* Proposition. Let A4, ..., Ax be eigenvalues of A. Then e e
11 1
max |A;| =1 and A 1 = 1
k=1,...K . .
11 L1

* Proof: Let (4, u) be an eigen-pair, i.e., Au = Au, u = [uy, ..., ug] "and |[|ul|, = 1.
Let i* be the index such that |u;| is maximized, i.e., i* = argmax; |u;|. Then,
Au = Au implies Z ;i juj = Aug+, which furthermore gives

=Za”=1
J

Finally, since X.;a;; = 1foralli = 1,...K, then A1 = 1, hence max 1A | = 1.

2 i+ jU;
Al <




Learning the Parameters 8 from Data

 We have derived some results based on the transition matrix ...

* In practice, we are given data samples rather than the transition matrix

* We will assume the data are sampled from a Markov chain, and then compute
the transition matrix from data via Maximum Likelihood Estimation (MLE)



MLE of Markov Chains

N
* Assume we have N i.i.d. samples {x(")}nzl from distribution pg (x)

¢ X = (xo, ...,XT)

each x; can take on K different values
* 8 = (A, ): unknown transition matrix and initial probability distribution

« MLE: N .
'y A _ n
(App, TTy) = argmaxy o ‘ ‘ Par(X)
n=1
Markov Property
Similar to Y
) ) N T
eAstlmatmg . ~ ) (n) n)
Ay, so left as (App, TTyy) = argmaxy o ‘ ‘ D (xo ) ‘ ‘ DA (xt | xt_l)
an exercise n=1 t=1
l, \l, Variables are separable l,

N
My = argmax, 1_[ D (x((,n)
n=1

)

Our focus next > AML = argmaxAl
n




Simplitying The MLE

o I(+): indicator function

N T
AML = argmaXAl ll lpA( (n) | x(n) )
n=1 t=1

* Nij: the number of samples with transitions from state i to state j, i.e.,

N; ;

Then we have:
(n)

1. P4 (xtgn) ‘ xt(f)l) — {'{=1H 1(al]) o=

2. Hn 1Ht 1PA( (n)‘xf_ﬂl)— 1H
<, [T},

ij 12 ( ()_]»x§)1_l)

(n) )

(n) (n) )

1H 1((1”) (xt =J, Xi_q1=1

=1 (au)NU

This gives:

i K
Ay = argmaxy [ [, 11

et (aij ) "




Simplitying The MLE

Ay = argmaxy [[i=4 Hj:l (aij) /

.Nij:

the number of samples with transitions from state i to state j

Taking logarithm and adding constraints 2, a;; = 1:

K K K
Ay = argmaxy z 2 Nijloga;; subject to 2 a;; =1 (Vi)
l Variables are separable

Solve the following foreveryi =1, ..., K:

—~ _ K = K _

Qij,, = argmaxg ijlNij loga;; subjectto j=1aij =1
Remark: We have seen how to solve Nij Remark: The optimal transition matrix can be
it using Lagrangian multipliers (recall dl\] = oFr found by simply counting and classifying the
EM for Gaussian Mixture Models) ML j=1 Ni ' number of the transitions of the sample states!




Conclusion

* Markov chains have several applications

* Modeling text sequences
* Modeling gene sequences

* The ML estimate di\jML of the transition matrix is given by

Yjipy T

Nij <

K
j=1Nij

Number of transitions from state i to j

* Similarly, the ML estimate 7;,,, of the initial probability is given as

NiO <€

Tiyr = K .

J=1""

Number of times we start in state i




