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Deep Generative Models:
Markov Models



Taxonomy of Generative Models
What we’ve learned:
• PPCA
• VAE

What we study now:
• Markov Models



• Stochastic Processes
• Definition and Examples

• Markov Models and Markov Chains
• Definition
• Transition Matrix
• Examples

• Inference via Matrix Multiplication

• Learning via Maximum Likelihood

Lecture Outline



• Definition: A stochastic process 𝑋!, 𝑋", … , 𝑋#  is a sequence of random variables 
where each 𝑋$  takes values on the same sample space Ω (state space)

• Example (Bernoulli Process): 𝑋$  has 2 states and Ω ≔ {0,1}

𝑋$ ∼ Bernouli 𝑞 , 	 𝑡 = 0,… , 𝑇

• How many states does 𝑋! has? What is Ω?

• Example (Categorical Process): 𝑋$  has 𝐾 states and Ω ≔ {1,… , 𝐾}

𝑋$ ∼ Cat 𝜋 , 	 𝑡 = 0,… , 𝑇

• How many states does 𝑋! has? What is Ω?

Stochastic Process



• Issue: In the absence of any assumptions on ℙ, modeling the joint distribution 
ℙ(𝑋!, 𝑋", … , 𝑋#) might require exponentially many parameters

• Conditional Independence Assumption (Markov property):

• Consequence: We now only need linearly many parameters:
ℙ 𝑥!, … , 𝑥# 	= ℙ 𝑥! ℙ 𝑥" ∣ 𝑥! ℙ 𝑥% ∣ 𝑥!, 𝑥" ⋯ℙ 𝑥# ∣ 𝑥!, ⋯ , 𝑥#&%, 𝑥#&"

= ℙ 𝑥! 𝑝 𝑥" ∣ 𝑥! ℙ 𝑥% ∣ 𝑥" ⋯ℙ 𝑥# ∣ 𝑥#&"

Markov Property Revisited

future independent past given present

𝑋"#$ 	 ⊥ 	 𝑋%, … , 𝑋"&$ 	 ∣ 	 𝑋"



• Definition: A (discrete time) Markov chain is a stochastic process (𝑋!, 𝑋", … , 𝑋#) 
with the Markov property

ℙ 𝑥!, … , 𝑥# = ℙ 𝑥! ℙ 𝑥" ∣ 𝑥! ℙ 𝑥% ∣ 𝑥" ⋯ℙ 𝑥# ∣ 𝑥#&"

• Without the Markov Property:

• With the Markov Property:

Markov Chains

𝑋! 𝑋" 𝑋#$"⋯⋯ 𝑋#

𝑋! 𝑋" 𝑋#$"⋯⋯

𝑋#



• Initial Probability: 𝜋'  is the probability that 𝑋! starts at state 𝑖

𝜋' ≔ ℙ(𝑋! = 𝑖)   ∀𝑖 ∈ Ω = {1,… , 𝐾}

• Transition Probability: 𝑎'(  is the probability that 𝑋$  transitions from state 𝑖 to 𝑗

𝑎'( ≔ ℙ 𝑋$)" = 𝑗	|	𝑋$ = 𝑖 	 ∀𝑖, 𝑗 ∈ Ω = {1,… , 𝐾}

• Matrix and Vector Notations:

𝐴:=
𝑎"" … 𝑎"*
⋮ ⋱ ⋮
𝑎*" ⋯ 𝑎**

∈ ℝ*×* , 	 𝜋 ≔ 𝜋", … , 𝜋* ∈ ℝ"×*

Parameters of Markov Chains

A Markov chain is fully specified by its parameters 𝜃:= (𝜋, 𝐴)

Row Vector



• State space Ω = all	possible	words
• The following are viewed as words and included in the state space

• <s>: the start of the sentence
• Digits
• Punctuations

• Each sentence is a Markov chain where the words are random variables:

• Meaning of ℙ 𝑥$)"|𝑥$ : Given that the current word is 𝑥$, what is the probability 
that the next word is 𝑥$)"?

Example: Markov Sentence Model

<s>          Homework          1          is          due          soon          .

𝑋! 𝑋" 𝑋% 𝑋& 𝑋'𝑋( 𝑋)

ℙ 𝑥! ℙ 𝑥"|𝑥! ℙ 𝑥%|𝑥" ℙ 𝑥&|𝑥% ℙ 𝑥(|𝑥& ℙ 𝑥'|𝑥( ℙ 𝑥)|𝑥'



Example: DNA Sequencing
• State Space Ω = {𝒜, 𝒞, 𝒢, 𝒯}
• Transition Matrix 𝐴:                                          Initial Probability Vector 𝜋:

• Question 1: Given 𝒞, what is the probability of getting DNA sequence 𝒞𝒯𝒢𝒜𝒞?
• Answer 1:

ℙ(𝒞𝒯𝒢𝒜𝒞 ∣ 𝑋! = 𝒞) = ℙ(𝒯 ∣ 𝒞) ⋅ ℙ(𝒢 ∣ 𝒯) ⋅ ℙ(𝒜 ∣ 𝒢) ⋅ ℙ(𝒞 ∣ 𝒜) ≈ 0.00338

0.437 0.177 0.306 0.143

𝒜	 𝒞	 𝒢	 𝒯
𝒜	 0.359	 0.143	 0.167	 0.331
𝒞	 0.384	 0.156	 0.023	 0.437
𝒢	 0.306	 0.199	 0.150	 0.345
𝒯	 0.284	 0.182	 0.177	 0.357

𝒜	 0.25
𝒞	 0.25
𝒢	 0.25
𝒯	 0.25



Example: DNA Sequencing
• State Space Ω = {𝒜, 𝒞, 𝒢, 𝒯}

• Question 2: What’s the probability of 𝑋% = 𝒜 given 𝑋! = 𝒞?

• Answer 2: The state transition is 𝒞 → 𝑥" → 𝒜 for all possible 𝑥" ∈ Ω:

 ℙ(𝑋% = 𝒜 ∣ 𝑋! = 𝒞) = ∑4!∈6ℙ 𝑋% = 𝒜 	𝑋" = 𝑥" ⋅ ℙ 𝑋" = 𝑥"	 𝑋! = 𝒞

= 0.384, 0.156, 0.023,0.437
0.359
0.384
0.306
0.284

• This is the inner product of the second row and first column of the transition matrix 𝐴 
• This is the (2,1)-th entry of 𝐴<

𝒜	 0.25
𝒞	 0.25
𝒢	 0.25
𝒯	 0.25

𝒜	 𝒞	 𝒢	 𝒯
𝒜	 0.359	 0.143	 0.167	 0.331
𝒞	 0.384	 0.156	 0.023	 0.437
𝒢	 0.306	 0.199	 0.150	 0.345
𝒯	 0.284	 0.182	 0.177	 0.357



Example: DNA Sequencing
• State Space Ω = {𝒜, 𝒞, 𝒢, 𝒯}

• Question 3: What’s the probability of 𝑋% = 𝒜?

• Answer 3: The state transition is 𝑥! → 𝑥" → 𝒜 for all possible 𝑥!, 𝑥" ∈ Ω:

 ℙ(𝑋% = 𝒜) = ∑4"∈6ℙ 𝑋% = 𝒜 	𝑋! = 𝑥! ⋅ ℙ(𝑋! = 𝑥!)

• This is the inner product of the vector 𝜋 and the first column of 𝐴<:  𝜋𝐴<𝑒$

𝒜	 0.25
𝒞	 0.25
𝒢	 0.25
𝒯	 0.25

Question 2 Initial Probability

𝒜	 𝒞	 𝒢	 𝒯
𝒜	 0.359	 0.143	 0.167	 0.331
𝒞	 0.384	 0.156	 0.023	 0.437
𝒢	 0.306	 0.199	 0.150	 0.345
𝒯	 0.284	 0.182	 0.177	 0.357



• State Space 𝛺 = {1,… , 𝐾}
• 𝐴7 '(: the (𝑖, 𝑗)-th entry of 𝐴7

• 𝐴7 :(: the 𝑗-th column of 𝐴7

• ⋅ (: the 𝑗-th entry of a vector 

• Claim 1: ℙ 𝑋$)7 = 𝑗	 𝑋$ = 𝑖 = 𝐴7 '( ∀𝑠, 𝑡, 𝑖, 𝑗
• Claim 2: ℙ 𝑋7 = 𝑗 = 𝜋𝐴7 ( ∀𝑠, 𝑗
• Proof of Claim 2:

ℙ 𝑋= = 𝑗 =2
"∈?

ℙ 𝑋= = 𝑗 	𝑋% = 𝑖 ⋅ ℙ(𝑋% = 𝑖) =2
"∈?

𝐴= "@ ⋅ 𝜋" = 𝜋 𝐴= :@ = 𝜋𝐴= @

• Proof of Claim 1: By induction (next page)

Transition Matrix and Distribution of Future States
Transition Matrix 𝐴	and initial probability distribution 𝜋	:

𝐴:=
𝑎"" … 𝑎"*
⋮ ⋱ ⋮
𝑎*" ⋯ 𝑎**

∈ ℝ*×* , 	 𝜋 ≔ 𝜋", … , 𝜋* ∈ ℝ"×*

Claim 1 



• State Space 𝛺 = {1,… , 𝐾}
• 𝐴7 '(: the (𝑖, 𝑗)-th entry of 𝐴7

• 𝐴7 :(: the 𝑗-th column of 𝐴7

• ⋅ (: the 𝑗-th entry of a vector

• Claim 1: ℙ 𝑋$)7 = 𝑗	 𝑋$ = 𝑖 = 𝐴7 '(

• Proof of Claim 1 (Induction):
• ∀𝑠, 𝑡, it is easy to prove shift invariance: ℙ 𝑋!#= = 𝑗	 𝑋! = 𝑖 = ℙ 𝑋= = 𝑗	 𝑋% = 𝑖
• Next we prove ℙ 𝑋= = 𝑗	 𝑋% = 𝑖 = 𝐴"@=  by induction on 𝑠:

• The base case 𝑠 = 1 follows from the definition of 𝐴
• Suppose we have ℙ 𝑋!"# = 𝑗	 𝑋$ = 𝑖 = 𝐴%&!"# then:

ℙ 𝑋! = 𝑗	 𝑋$ = 𝑖 = ?
'∈)

ℙ 𝑋! = 𝑗	 𝑋!"# = 𝑘 ⋅ ℙ 𝑋!"# = 𝑘	 𝑋# = 𝑖) = ?
'∈)

𝑎'& ⋅ 𝐴!"# %' = 𝐴! %&

Proof of Claim 1
Transition Matrix 𝐴	and initial probability distribution 𝜋	:

𝐴:=
𝑎"" … 𝑎"*
⋮ ⋱ ⋮
𝑎*" ⋯ 𝑎**

∈ ℝ*×* , 	 𝜋 ≔ 𝜋", … , 𝜋* ∈ ℝ"×*



• Proposition. Let 𝜆", … , 𝜆*  be eigenvalues of 𝐴. Then 

max
CD",…,*

|𝜆C| = 1  and  𝐴

1
1
⋮
1

=

1
1
⋮
1

• Proof: Let (𝜆, 𝑢) be an eigen-pair, i.e., 𝐴𝑢 = 𝜆𝑢, 𝑢 = 𝑢", … , 𝑢* Fand | 𝑢 |% = 1. 
Let 𝑖∗ be the index such that |𝑢'| is maximized, i.e., 𝑖∗ = argmax' 	|𝑢'|. Then, 
𝐴𝑢 = 𝜆𝑢 implies ∑( 𝑎'∗(𝑢( = 𝜆𝑢'∗, which furthermore gives

𝜆 ≤
∑( 𝑎'∗(𝑢(
𝑢'∗

≤m
(

𝑎'∗( ⋅
𝑢(
𝑢'∗

≤m
(

𝑎'∗( =m
(

𝑎'∗( = 1.

Finally, since ∑( 𝑎'( = 1 for all 𝑖 = 1,…𝐾, then 𝐴1 = 1, hence max
CD",…,*

|𝜆C| = 1. 

Eigenvalues of Transition Matrix 𝐴:=
𝑎"" … 𝑎"*
⋮ ⋱ ⋮
𝑎*" ⋯ 𝑎**

∈ ℝ*×*



• We have derived some results based on the transition matrix …

• In practice, we are given data samples rather than the transition matrix 

• We will assume the data are sampled from a Markov chain, and then compute 
the transition matrix from data via Maximum Likelihood Estimation (MLE)

Learning the Parameters 𝜃 from Data



• Assume we have 𝑁 i.i.d. samples 𝒙 H
HD"
I

 from distribution 𝑝J(𝒙)
• 𝒙 ≔ (𝑥%, … , 𝑥L)                                                             each 𝑥! can take on 𝐾 different values
• 𝜃 = (𝐴, 𝜋): unknown transition matrix and initial probability distribution

• MLE: 

MLE of Markov Chains 𝑋! 𝑋" 𝑋#$"⋯⋯ 𝑋#

( =𝐴MN, >𝜋MN) = argmaxO,PD
QR$

S

𝑝P 𝑥%
(Q) D

!R$

L

𝑝O 𝑥!
Q 𝑥!&$

Q

>𝜋MN = argmaxPD
QR$

S

𝑝P 𝑥%
(Q) =𝐴MN = argmaxOD

QR$

S

D
!R$

L

𝑝O 𝑥!
Q 𝑥!&$

Q

( =𝐴MN, >𝜋MN) = argmaxO,PD
QR$

S

𝑝O,P(𝒙 Q )

Markov Property
Similar to 
estimating 
K𝐴*+, so left as 

an exercise 

Our focus next

Variables are separable



• 𝕀(⋅):             indicator function
• 𝑁'(:              the number of samples with transitions from state 𝑖 to state 𝑗, i.e.,

                                     𝑁'( ≔ ∑HD"I ∑$D!# 𝕀 𝑥$
H = 𝑗, 𝑥$&"

H = 𝑖  

Then we have:

1. 𝑝L 𝑥$
H 𝑥$&"

H = ∏'D"
* ∏(D"

* 𝑎'(
𝕀 4$

% D(,	4$&!
% D'

2. ∏HD"
I ∏$D"

# 𝑝L 𝑥$
H 𝑥$&"

H = ∏HD"
I ∏$D"

# ∏'D"
* ∏(D"

* 𝑎'(
𝕀 4$

% D(,	4$&!
% D'

                                                           = ∏'D"
* ∏(D"

* 𝑎'(
I'(

This gives:

Simplifying The MLE =𝐴MN = argmaxOD
QR$

S

D
!R$

L

𝑝O 𝑥!
Q 𝑥!&$

Q

=𝐴MN = argmaxO∏"R$
V ∏@R$

V 𝑎"@
S!"  



• 𝑁'(:              the number of samples with transitions from state 𝑖 to state 𝑗

Taking logarithm and adding constraints ∑( 𝑎'( = 1:

Simplifying The MLE
=𝐴MN = argmaxO∏"R$

V ∏@R$
V 𝑎"@

S!"  

=𝐴MN = argmaxO2
"R$

V

2
@R$

V

𝑁"@ log 𝑎"@ 	 subject	to	 2
@R$

V

𝑎"@ = 1	(∀𝑖)

Solve the following for every 𝑖 = 1,… , 𝐾:
R𝑎"@MN = argmaxW!" ∑@R$

V 𝑁"@ log 𝑎"@ 	 subject	to	 ∑@R$V 𝑎"@ = 1 

Variables are separable

R𝑎"@MN =
𝑁"@

∑@R$V 𝑁"@

Remark: The optimal transition matrix can be 
found by simply counting and classifying the 
number of the transitions of the sample states! 

Remark: We have seen how to solve 
it using Lagrangian multipliers (recall 
EM for Gaussian Mixture Models)



• Markov chains have several applications
• Modeling text sequences
• Modeling gene sequences

• The ML estimate r𝑎'(NO 	 of the transition matrix is given by 

• Similarly, the ML estimate s𝜋'NO of the initial probability is given as

Conclusion

R𝑎"@MN =
𝑁"@

∑@R$V 𝑁"@

T𝜋"MN =
𝑁"%

∑@R$V 𝑁@%

Number of transitions from state 𝑖 to 𝑗

Number of times we start in state 𝑖 


